资源类型

期刊论文 448

年份

2024 1

2023 43

2022 45

2021 37

2020 37

2019 31

2018 18

2017 25

2016 16

2015 15

2014 16

2013 14

2012 20

2011 10

2010 14

2009 12

2008 19

2007 25

2006 11

2005 7

展开 ︾

关键词

力学性能 8

力学模型 2

数值模拟 2

斜拉桥 2

机械结构 2

现场监测 2

2035 1

60 GHz;天线阵列;线极化;圆极化;毫米波 1

ANSYS 1

Au/Ti双功能催化剂 1

BFT 1

COVID-19 1

Cu(Inx 1

DNA组装 1

DNA结构 1

EBSD 1

EFP 1

FRP 聚合物 1

Ga1–x)Se2 1

展开 ︾

检索范围:

排序: 展示方式:

A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy

Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 338-350 doi: 10.1007/s11465-019-0572-8

摘要: Low-carbon manufacturing (LCM) is increasingly being regarded as a new sustainable manufacturing model of carbon emission reduction in the manufacturing industry. In this paper, a two-stage low-carbon scheduling optimization method of job shop is presented as part of the efforts to implement LCM, which also aims to reduce the processing cost and improve the efficiency of a mechanical machining process. In the first stage, a task assignment optimization model is proposed to optimize carbon emissions without jeopardizing the processing efficiency and the profit of a machining process. Non-dominated sorting genetic algorithm II and technique for order preference by similarity to an ideal solution are then adopted to assign the most suitable batch task of different parts to each machine. In the second stage, a processing route optimization model is established to plan the processing sequence of different parts for each machine. Finally, niche genetic algorithm is utilized to minimize the makespan. A case study on the fabrication of four typical parts of a machine tool is demonstrated to validate the proposed method.

关键词: Low-carbon manufacturing     carbon efficiency     multi-objective optimization     two-stage scheduling     job shop    

Efficiency characteristics of piezostack pump for linear actuators

Junwu KAN, Kehong TANG, Chenghui SHAO, Guoren ZHU, Taijiang PENG,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 407-414 doi: 10.1007/s11465-009-0049-2

摘要: A piezostack pump for linear actuators is presented and studied in terms of mechanical energy efficiency (MEE), energy conversion efficiency (ECE) and design method. MEE is defined as the ratio of the output mechanical energy to that converted from input electrical energy, and ECE is the ratio of output mechanical energy to input electrical energy. The analysis results show that both MEE and ECE decrease with the increase of stiffness of the chamber diaphragm (), which is a function of the radius ratio (rigid disk radius to chamber radius). There is respective optimal external load () for them to achieve peak value for a given piezostack with blocked force () and stiffness (). The optimal force ratio (/) is a constant of 0.5 for maximum MEE, and between 0.57 and 0.5 for maximum ECE. Considering the deflection of the pump chamber and dynamic response of the piezostack, the stiffness ratio (/) should be limited between 0.3 and 1, and the relative radius ratio is between 0.7 and 0.8. With the increase of the radius ratio in the range, the maximal MEE decreases from 0.38 to 0.25, and the peak ECE decreases from 0.20 to 0.14.

关键词: piezostack actuator     piezostack pump     mechanical efficiency     energy conversion efficiency (ECE)    

Research on overlaying welding rod of high hardness maraging steel

PAN Yong-ming, CHEN Shao-wei

《机械工程前沿(英文)》 2006年 第1卷 第4期   页码 465-467 doi: 10.1007/s11465-006-0060-9

摘要: The development of new maraging steel overlaying welding rod, which contains Co, Mo, W and V alloy, solved the problems of poor homogeneity of hardness and mechanical process, prolonged the service life of wear-resistant components and increased the productive efficiency of repairing, greatly benefiting the national economy.

关键词: development     productive efficiency     national     homogeneity     mechanical    

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0747-1

摘要: Capacitive sensors are efficient tools for biophysical force measurement, which is essential for the exploration of cellular behavior. However, attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors. In this work, a bionic swallow structure design norm was developed for mechanical decoupling, and the influences of structural parameters on mechanical behavior were fully analyzed and optimized. A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences. Electrostatic instability was evaluated, and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and application-specific integrated circuit readouts. An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm, and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor, which can be easily compensated in readouts. The proposed sensor also exhibited high resistance against electrostatic rotation, and the resulting measurement error dropped below 0.751%. The rotation interferences were less than 0.330 nm and (1.829 × 10−7)°, which were 35 times smaller than those of the traditional differential one. Based on the proposed bionic decoupling method, the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/µm for gap-variant and area-variant devices, respectively, which were the highest among the current devices. High immunity to mechanical disturbances was maintained simultaneously, i.e., less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices, respectively, indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.

关键词: micro-electro-mechanical system capacitive sensor     bionics     operation instability     mechanical and electrical decoupling     biomedical force measurement    

The effect of different agricultural management practices on irrigation efficiency, water use efficiency

La ZHUO, Arjen Y. HOEKSTRA

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 185-194 doi: 10.15302/J-FASE-2017149

摘要: This paper explores the effect of varying agricultural management practices on different water efficiency indicators: irrigation efficiency (IE), crop water use efficiency (WUE), and green and blue water footprint (WF). We take winter wheat in an experimental field in Northern China as a case study and consider a dry, average and wet year. We conducted 24 modeling experiments with the AquaCrop model, for all possible combinations of four irrigation techniques, two irrigation strategies and three mulching methods. Results show that deficit irrigation most effectively improved blue water use, by increasing IE (by 5%) and reducing blue WF (by 38%), however with an average 9% yield reduction. Organic or synthetic mulching practices improved WUE (by 4% and 10%, respectively) and reduced blue WF (by 8% and 17%, respectively), with the same yield level. Drip and subsurface drip irrigation improved IE and WUE, but drip irrigation had a relatively large blue WF. Improvements in one water efficiency indicator may cause a decline in another. In particular, WUE can be improved by more irrigation at the cost of the blue WF. Furthermore, increasing IE, for instance by installing drip irrigation, does not necessarily reduce the blue WF.

关键词: field management     irrigation efficiency     water footprint     water productivity     water use efficiency    

Determination of mechanical parameters for elements in meso-mechanical models of concrete

Xianglin GU, Junyu JIA, Zhuolin WANG, Li HONG, Feng LIN

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 391-401 doi: 10.1007/s11709-013-0225-7

摘要: The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model, in which the mechanical parameters derived from macro-scale material tests were applied directly to the mortar elements. By comparing the calculated results with those predicted by the Carpinteri and Weibull size effects laws, a series of formulas to convert the macro-scale mechanical parameters of mortar and interface to those at the meso-scale were proposed through a fitting analysis. Based on the proposed formulas, numerical simulation of axial compressive and tensile failure processes of concrete and cement mortar materials, respectively were conducted. The calculated results were a good match with the test results.

关键词: concrete     meso-mechanical model     discrete element method     size effect     mechanical parameter    

Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1254-1266 doi: 10.1007/s11705-023-2297-3

摘要: To enhance the mechanical properties and wear resistance of epoxy resin, polyaniline nanorods were first synthesized using a facile route, and then introduced into the epoxy matrix to yield composites via solution mixing. Several measurements were conducted to investigate the phase structures and compositions of polyaniline nanorods, and their positive influences on the mechanical and tribological properties of epoxy resin were also characterized. The results confirmed that the as-synthesized polyaniline exhibited representative rod-like morphologies and dispersed well in the epoxy matrix, leading to significant enhancements in the tensile strength and elastic modulus of epoxy composites. The highest values of 110.33 MPa and 2.04 GPa were obtained by adding 5%–7% polyaniline nanorods, which were 43% and 62% higher than the pure sample, respectively. The wear rate was increased first and then decreased along with polyaniline nanorods, presenting the lowest value of 2.12 × 10−5 mm3·Nm–1 by adding 5% filler, which was markedly reduced by ca. 70% compared to the control sample. Finally, the possible wear mechanism was proposed and discussed in detail. This study tried to broaden the applications of polyaniline nanorods in the field of tribology.

关键词: epoxy resin     polyaniline nanorods     mechanical property     tribological performance     wear mechanism    

Evaluating R&D efficiency of China’s listed lithium battery enterprises

《工程管理前沿(英文)》   页码 473-485 doi: 10.1007/s42524-022-0213-5

摘要: Promoting the growth of the lithium battery sector has been a critical aspect of China’s energy policy in terms of achieving carbon neutrality. However, despite significant support on research and development (R&D) investments that have resulted in increasing size, the sector seems to be falling behind in technological areas. To guide future policies and understand proper ways of promoting R&D efficiency, we looked into the lithium battery industry of China. Specifically, data envelopment analysis (DEA) was used as the primary approach based on evidence from 22 listed lithium battery enterprises. The performance of the five leading players was compared with that of the industry as a whole. Results revealed little indication of a meaningful improvement in R&D efficiency throughout our sample from 2010 to 2019. However, during this period, a significant increase in R&D expenditure was witnessed. This finding was supported, as the results showed that the average technical efficiency of the 22 enterprises was 0.442, whereas the average pure technical efficiency was at 0.503, thus suggesting that they were suffering from decreasing returns to scale (DRS). In contrast, the performance of the five leading players seemed superior because their average efficiency scores were higher than the industry’s average. Moreover, they were experiencing increasing scale efficiency (IRS). We draw on these findings to suggest to policymakers that supporting technologically intensive sectors should be more than simply increasing investment scale; rather, it should also encompass assisting businesses in developing efficient managerial processes for R&D.

关键词: Data Envelopment Analysis     R&D investment efficiency     China’s listed lithium battery enterprises     technical efficiency     pure technical efficiency     scale efficiency    

Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels

null

《农业科学与工程前沿(英文)》 2019年 第6卷 第4期   页码 357-365 doi: 10.15302/J-FASE-2019275

摘要:

Phosphorus (P) is essential for life and for efficient crop production, but global P use with limited recycling is inefficient in several sectors, including agronomy. Unfortunately, plant physiologists, agronomists, farmers and end users employ different measures for P use efficiency (PUE), which often masks their values at different scales. The term P use effectiveness, which also considers energetic and sustainability measures in addition to P balances, is also a valuable concept. Major physiological and genetic factors for plant P uptake and utilization have been identified, but there has been limited success in genetically improving PUE of modern crop cultivars. In maize, studies on root architectural and morphological traits appear promising. Rhizosphere processes assist in mobilizing and capturing sparingly soluble phosphate from rock phosphate. Combinations of phosphate-solubilizing microorganisms with ammonium-based nitrogen fertilizer, as well as strategies of fertilizer placement near the roots of target crops, can moderately enhance PUE. The desired concentration of P in the products differs, depending on the final use of the crop products as feed, food or for energy conversion, which should be considered during crop production.

关键词: acquisition efficiency     plant growth promoting rhizobacteria     phosphate     use efficiency     utilization efficiency    

Thermo-mechanical simulation of frost heave in saturated soils

《结构与土木工程前沿(英文)》   页码 1400-1412 doi: 10.1007/s11709-023-0990-x

摘要: Roads are exposed to various degradation mechanisms during their lifetime. The pavement deterioration caused by the surrounding environment is particularly severe in winter when the humidity and subfreezing temperatures prevail. Frost heave-induced damage is one of the winter-related pavement deterioration. It occurs when the porewater in the soil is exposed to freezing temperatures. The study of frost heave requires conducting a multiphysics analysis, considering the thermal, mechanical, and hydraulic fields. This paper presents the use of a coupled thermo-mechanical approach to simulate frost heave in saturated soils. A function predicting porosity evolution is implemented to couple the thermal and mechanical field analyses. This function indirectly considers the effect of the water seepage inside the soil. Different frost heave scenarios with uniform and non-uniform boundary conditions are considered to demonstrate the capabilities of the method. The results of the simulations indicate that the thermo-mechanical model captures various processes involved in the frost heave phenomenon, such as water fusion, porosity variation, cryogenic suction force generation, and soil expansion. The characteristics and consequences of each process are determined and discussed separately. Furthermore, the results show that non-uniform thermal boundaries and presence of a culvert inside the soil result in uneven ground surface deformations.

关键词: frost heave     multiphysics analysis     thermo-mechanical approach     saturated soils    

Optimization of power and efficiency for an irreversible Diesel heat engine

Shiyan ZHENG, Guoxing LIN

《能源前沿(英文)》 2010年 第4卷 第4期   页码 560-565 doi: 10.1007/s11708-010-0018-9

摘要: A cyclic model of an irreversible Diesel heat engine is presented, in which the heat loss between the working fluid and the ambient during combustion, the irreversibility inside the cyclic working fluid resulting from friction, eddies flow, and other irreversible effects are taken into account. By using the thermodynamic analysis and optimal control theory methods, the analytical expressions of power output and efficiency of the Diesel heat engine are derived. Variations of the main performance parameters with the pressure ratio of the cycle are analyzed and calculated. The optimum operating region of the heat engine is determined. Moreover, the optimum criterion of some important parameters, such as the power output, efficiency, pressure ratio, and temperatures of the working fluid at the related state points are illustrated and discussed. The conclusions obtained in the present paper may provide some theoretical guidance for the optimal parameter design of a class of internal-combustion engines.

关键词: Diesel heat engine     irreversibility     power output     efficiency     parameter optimization    

Electronic and mechanical responses of two-dimensional HfS

Mohammad SALAVATI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 486-494 doi: 10.1007/s11709-018-0491-5

摘要: During the last decade, numerous high-quality two-dimensional (2D) materials with semiconducting electronic character have been synthesized. Recent experimental study (Sci. Adv. 2017;3: e1700481) nevertheless confirmed that 2D ZrSe and HfSe are among the best candidates to replace the silicon in nanoelectronics owing to their moderate band-gap. We accordingly conducted first-principles calculations to explore the mechanical and electronic responses of not only ZrSe and HfSe , but also ZrS and HfS in their single-layer and free-standing form. We particularly studied the possibility of engineering of the electronic properties of these attractive 2D materials using the biaxial or uniaxial tensile loadings. The comprehensive insight provided concerning the intrinsic properties of HfS , HfSe , ZrS , and ZrSe can be useful for their future applications in nanodevices.

关键词: 2D materials     mechanical     electronic     DFT    

Methods and applications of DEA cross-efficiency: Review and future perspectives

Jie WU, Jiasen SUN, Liang LIANG

《工程管理前沿(英文)》 2021年 第8卷 第2期   页码 199-211 doi: 10.1007/s42524-020-0133-1

摘要: The field of engineering management usually involves evaluation issues, such as program selection, team performance evaluation, technology selection, and supplier evaluation. The traditional self-evaluation data envelopment analysis (DEA) method usually exaggerates the effects of several inputs or outputs of the evaluated decision-making unit (DMU), resulting in unrealistic results. To address this problem, scholars have proposed the cross-efficiency evaluation (CREE) method. Compared with the DEA method, CREE can rank DMUs more completely by using reasonable weights. With the extensive application of this technique, several problems, such as non-unique weights and non-Pareto optimal results, have arisen in CREE methods. Therefore, the improvement of CREE has attracted the attention of many scholars. This paper reviews the theory and applications of CREE, including the non-uniqueness problem, the aggregation of cross-efficiency data, and applications in engineering management. It also discusses the directions for future research on CREE.

关键词: cross-efficiency evaluation     efficiency     secondary goal model     aggregation     review    

STRATEGIES FOR IMPROVING WATER USE EFFICIENCY IN DRYLAND AGROECOSYSTEMS

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 599-602 doi: 10.15302/J-FASE -2021409

Experimental study on compaction-induced anisotropic mechanical property of rockfill material

Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 109-123 doi: 10.1007/s11709-021-0693-0

摘要: The anisotropy of rockfill materials has a significant influence on the performance of engineering structures. However, relevant research data are very limited, because of the difficulty with preparing specimens with different inclination angles using traditional methods. Furthermore, the anisotropy test of rockfill materials is complex and complicated, especially for triaxial tests, in which the major principal stress plane intersects with the compaction plane at different angles. In this study, the geometric characteristics of a typical particle fraction consisting of a specific rockfill material were statistically investigated, and the distribution characteristics of particle orientation in specimens prepared via different compaction methods were examined. For high-density rockfill materials, a set of specimen preparation devices for inclined compaction planes was developed, and a series of conventional triaxial compression tests with different principal stress direction angles were conducted. The results reveal that the principal stress direction angle has a significant effect on the modulus, shear strength, and dilatancy of the compacted rockfill materials. Analysis of the relationship between the principal stress direction angles, change in the stress state, and change in the corresponding dominant shear plane shows that the angle between the compacted surface and dominant shear plane is closely related to interlocking resistance associated with the particle orientation. In addition, different principal stress direction angles can change the extent of the particle interlocking effect, causing the specimen to exhibit different degrees of anisotropy.

关键词: rockfill     inclination of specimen preparation     anisotropy     mechanical property     mechanism    

标题 作者 时间 类型 操作

A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy

Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON

期刊论文

Efficiency characteristics of piezostack pump for linear actuators

Junwu KAN, Kehong TANG, Chenghui SHAO, Guoren ZHU, Taijiang PENG,

期刊论文

Research on overlaying welding rod of high hardness maraging steel

PAN Yong-ming, CHEN Shao-wei

期刊论文

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

期刊论文

The effect of different agricultural management practices on irrigation efficiency, water use efficiency

La ZHUO, Arjen Y. HOEKSTRA

期刊论文

Determination of mechanical parameters for elements in meso-mechanical models of concrete

Xianglin GU, Junyu JIA, Zhuolin WANG, Li HONG, Feng LIN

期刊论文

Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear

期刊论文

Evaluating R&D efficiency of China’s listed lithium battery enterprises

期刊论文

Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels

null

期刊论文

Thermo-mechanical simulation of frost heave in saturated soils

期刊论文

Optimization of power and efficiency for an irreversible Diesel heat engine

Shiyan ZHENG, Guoxing LIN

期刊论文

Electronic and mechanical responses of two-dimensional HfS

Mohammad SALAVATI

期刊论文

Methods and applications of DEA cross-efficiency: Review and future perspectives

Jie WU, Jiasen SUN, Liang LIANG

期刊论文

STRATEGIES FOR IMPROVING WATER USE EFFICIENCY IN DRYLAND AGROECOSYSTEMS

期刊论文

Experimental study on compaction-induced anisotropic mechanical property of rockfill material

Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN

期刊论文